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Abstract

Background: It has been suggested that polymorphisms within CYP1A2 impact inter-individual variation in the
response to caffeine. The purpose of this study was to explore the acute effects of caffeine on resistance exercise,
jumping, and sprinting performance in a sample of resistance-trained men, and to examine the influence of genetic
variation of CYP1A2 (rs762551) on the individual variation in responses to caffeine ingestion.

Methods: Twenty-two men were included as participants (AA homozygotes n = 13; C-allele carriers n = 9) and were
tested after the ingestion of caffeine (3 mg/kg of body mass) and a placebo. Exercise performance was assessed
with the following outcomes: (a) movement velocity and power output in the bench press exercise with loads of
25, 50, 75, and 90% of one-repetition maximum (1RM); (b) quality and quantity of performed repetitions in the
bench press exercise performed to muscular failure with 85% 1RM; (c) vertical jump height in a countermovement
jump test; and (d) power output in a Wingate test.

Results: Compared to placebo, caffeine ingestion enhanced: (a) movement velocity and power output across all
loads (effect size [ES]: 0.20–0.61; p < 0.05 for all); (b) the quality and quantity of performed repetitions with 85% of
1RM (ES: 0.27–0.85; p < 0.001 for all); (c) vertical jump height (ES: 0.15; p = 0.017); and (d) power output in the
Wingate test (ES: 0.33–0.44; p < 0.05 for all). We did not find a significant genotype × caffeine interaction effect (p-
values ranged from 0.094 to 0.994) in any of the analyzed performance outcomes.

Conclusions: Resistance-trained men may experience acute improvements in resistance exercise, jumping, and
sprinting performance following the ingestion of caffeine. The comparisons of the effects of caffeine on exercise
performance between individuals with the AA genotype and AC/CC genotypes found no significant differences.

Trial registration: Australian New Zealand Clinical Trials Registry. ID: ACTRN12619000885190.

Keywords: Supplements, Ergogenic effects, Genetic, Variation

Background
Caffeine is one of the most consumed psychoactive stim-
ulants in the world [1]. The effects of caffeine supple-
mentation on exercise performance have received
considerable attention in the literature, and the evidence
on its ergogenic effects is well-established [1–3]. For

example, a recent umbrella review of 21 published meta-
analyses reported that caffeine ingestion is acutely ergo-
genic for aerobic endurance, muscle strength, muscle
endurance, power, jumping performance, and exercise
speed [3]. Despite these established performance-
enhancing effects of caffeine, it is also commonly ac-
knowledged that there is a large degree of variation in
response to caffeine supplementation between individ-
uals [4]. Studies that have reported individual participant
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data suggest that some individuals experience an in-
crease in performance following caffeine ingestion,
whereas others do not [4–6]. In order to develop more
effective guidelines for caffeine supplementation in sport
and exercise settings, the scientific focus has recently
been placed on examining and understanding the rea-
sons for the between-individual variation in responses
[4, 7].
One potential driver of this individual response is

inter-individual genetic variation [4]. The gene
CYP1A2 encodes cytochrome P450 1A2, an enzyme
responsible for up to 95% of caffeine metabolism [8].
The speed of caffeine metabolism is affected by a sin-
gle nucleotide polymorphism, rs762551, within this
gene [8]. Individuals with the AA genotype at
rs762551 are commonly classified as "fast caffeine
metabolizers", while C allele carriers (AC/CC geno-
types) tend to have a slower clearance of caffeine and
are, therefore, commonly classified as "slow caffeine
metabolizers" [9]. Significantly greater ergogenic ef-
fects of caffeine on aerobic endurance have been re-
ported for individuals with the AA genotype,
compared with C allele carriers [6, 10]. However, for
high-intensity exercise tasks of a shorter duration, the
evidence is less clear.
In a recent study of 19 basketball players, acute in-

gestion of 3 mg/kg of caffeine produced similar ef-
fects on vertical jump performance in individuals
with the AA genotype and AC/CC genotypes [11].
These results are in accord with a study that utilized
a 30-s Wingate sprint test, while improvement in
peak and mean power output was noted following
caffeine ingestion, the researchers did not find differ-
ences in responses between genotypes [12]. Based on
the results of these two studies, it seems variations
in the CYP1A2 genotype may not affect the ergo-
genic effects of caffeine ingestion on high-intensity
exercise performance. However, a recent study re-
ported that caffeine ingestion enhances the number
of performed repetitions in a resistance exercise ses-
sion in individuals with the AA genotype but not
AC/CC genotypes [13].
Given the conflicting evidence on this topic, the aim

of this randomized, double-blind crossover study was to
explore the acute effects of caffeine on resistance exer-
cise, jumping, and cycle ergometer sprint performance
in a sample of resistance-trained men and the influence
of genetic variation of CYP1A2 (rs762551) on the indi-
vidual variation in responses. We hypothesized that caf-
feine ingestion would be ergogenic across all exercise
tasks and that individuals with the AA genotype would
experience greater improvements in exercise perform-
ance following caffeine ingestion than those with AC/CC
genotypes.

Methods
Experimental design
This study employed a double-blind, randomized, cross-
over design. All participants attended four laboratory
sessions. All trials were performed in the morning hours
(between 7 am and noon), and at the same time of the
day across the sessions for each participant, to ensure
that the results were not affected by circadian variation
[14]. The trials took place 4 to 7 days apart. The first
and second session included familiarization with the ex-
ercise protocol (explained in detail in the “Exercise
protocol” section). The two main sessions (i.e., caffeine
and placebo sessions) were conducted in a randomized
and counterbalanced order. The participants were ran-
domly assigned to the two conditions; half of the partici-
pants ingested caffeine in the first session and a placebo
in the second session, while the other half ingested a pla-
cebo in the first session and caffeine in the second ses-
sion. Participants were asked not to perform any
strenuous exercise for at least 24 hours before the main
trials. The participants were also asked to keep a food
diary for 24 h using “MyFitnessPal” software, and to
match their dietary intakes on the days before the two
main sessions as much as possible. The participants were
required to refrain from caffeine intake after 6 pm on
the day prior to the testing [1]. In order to assist with
caffeine restriction, we provided the participants with a
list of the most common foods and drinks that contain
caffeine. The participants arrived at the laboratory follow-
ing overnight fasting. Caffeine was administered in capsule
form, with a dose of 3mg/kg of body mass (equivalent to
the caffeine dose contained in approximately two cups of
coffee). The placebo capsule was identical in appearance
to the caffeine capsule, but, instead of caffeine, it con-
tained 3mg/kg of dextrose. The capsules were ingested
60min before the start of the exercise session [1]. Geno-
type was determined using a buccal swab. A validated
Food Frequency Questionnaire was used to estimate ha-
bitual caffeine intake [15]. Prior to the study, the trial was
registered in the Australian New Zealand Clinical Trials
Registry ID: ACTRN12619000885190.

Participants
The study involved resistance-trained men as partici-
pants. Being resistance-trained was defined in this study
as having a minimum of 6 months of resistance training
experience with a minimum weekly training frequency
of two times on most weeks. All participants were non-
smokers. Based on an a priori power analysis done using
G*Power software (version 3.1; Germany, Dusseldorf) for
repeated-measures Analysis of Variance (ANOVA)
(within-between interaction, i.e., in the context of this
study genotype × caffeine interaction), with an assumed
true effect size f of 0.25, the alpha error level of 0.05,
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and the expected correlation between repeated measures
of 0.75, the required sample size to achieve the statistical
power of 80% for this study was 18 participants. To fac-
tor in possible dropouts, we recruited 22 participants.
The exclusion criteria were: (i) prior use of anabolic ste-
roids; and (ii) the existence of any health limitations.
Ethical approval for this study was granted by the
Victoria University Human Research Ethics Committee
(HRE19–019). The remaining data of the project are
published elsewhere [16]. Before enrolling in the study,
every participant signed an informed consent and filled
out a Physical Activity Readiness Questionnaire (PAR-
Q). Only participants who responded with ‘No’ to all
PAR-Q items were included in the study. In line with
previous research [6, 11–13], we combined participants
with the AC and CC genotypes into one group (AC/CC
group) for the analysis.

Exercise protocol

One repetition maximum testing The first two ses-
sions included familiarization with the exercise protocol.
These sessions were the same as the main sessions (i.e.,
placebo and caffeine sessions), with the exception that
the first one included one-repetition maximum (1RM)
testing in the bench press exercise. For the 1RM test,
the participants performed sets of one repetition with
progressive increases in load until they reached their es-
timated 1RM. The load was initially set to 20 kg and
subsequently increased by 10 kg increments if the mean
concentric velocity of the repetition was 0.4 m/s or
higher (as determined by a linear position transducer at-
tached to the barbell). If the mean velocity was lower
than 0.4 m/s, the load for the next attempt was adjusted
using smaller increases (e.g., 5 kg or 2.5 kg, determined
based on consultation with the participants). The partici-
pants performed 1RM attempts with progressively in-
creasing loads until the mean velocity was ≤0.2 m/s [17].
When the mean velocity of a successful 1RM attempt
reached these values, the load was considered as a valid
estimate of the 1RM [17]. Three minutes were allowed
between 1RM attempts.

Movement velocity and power in the bench press
exercise In the first session, upon determining the 1RM,
the participants performed the bench press exercise with
loads of 25, 50, 75, and 90% of 1RM [18]. The second,
third, and fourth sessions started with the assessment of
movement velocity in the bench press exercise with dif-
ferent loads, as the 1RM test was only performed in the
first session. The external load was first set at 25% of
1RM and was progressively increased to 90% of 1RM.
With each load, the participants performed two sets of
one repetition and were instructed to lift the load as fast

as possible. The better repetition (in the context of
higher movement velocity and power output) was used
for the analysis. Each repetition was followed by a 3-min
rest interval. During each repetition, a GymAware linear
position transducer (GymAware Power Tool, Kinetic
Performance Technologies, Canberra, Australia) was at-
tached to the barbell and used to measure mean concen-
tric velocity (m/s), mean power (W), peak concentric
velocity (m/s), and peak power (W). Previous research
has established that this device has good test-retest reli-
ability for power and velocity outcomes in the bench
press [19].

Muscle endurance After the final repetition with 90%
of 1RM, participants were provided with 5 min of passive
rest. After the rest interval, muscle endurance was
assessed with a test that involved performing repetitions
to momentary muscle failure with a load corresponding
to 85% of 1RM in the bench press exercise, as in the
study by Rahimi [13]. Besides the total number of repeti-
tions, we also measured velocity and power output for
each repetition using the linear position transducer at-
tached to the barbell. For the purpose of statistical ana-
lyses, we compared the total number of repetitions in
the placebo and caffeine conditions. We also explored
movement velocity and power output of all repetitions
by matching the number of repetitions between the pla-
cebo and caffeine conditions. For example, if a partici-
pant performed eight repetitions following the ingestion
of placebo and nine following the ingestion of caffeine,
for this part of the analysis, we only considered move-
ment velocity and power output in the first eight repeti-
tions. This approach allowed us to objectively quantify
the average quality of the repetitions during the test and
examine if caffeine ingestion had an effect on movement
velocity and power output when the total number of
repetitions was matched.

Countermovement jump After the muscle endurance
test, participants rested passively for 3 minutes and then
performed 1 minute of light running, followed by 10
bodyweight squats, in order to warm-up for the counter-
movement jump (CMJ). The participants performed a
CMJ on a force platform (400S Isotronic Fitness Tech-
nology, Skye, South Australia, Australia). The CMJ was
performed without an arm swing. The participants
started CMJ testing from an upright standing position
on the force platform. The participants positioned them-
selves in the starting position and then received com-
mands from the software displayed on a computer
screen that was in front of the platform. The software
counted down, “3, 2, 1” and provided “Set” and “Go”
commands. After the “Go” command, the participants
had 5 seconds to complete the jump. From the starting
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position, the participants performed a downward coun-
termovement (i.e., a fast knee flexion) where their lowest
position was a semi-squat position (knee ~ 90° and
trunk/hips in a flexed position) [20]. Immediately after
reaching this point, the participants performed an "ex-
plosive" extension of the legs [20]. The participants were
given instructions to jump as quickly and "explosively"
as possible to achieve maximal vertical jump height [20].
The participants had one warm-up jump and three offi-
cial attempts. Each attempt was followed by 1 minute of
rest. For the analysis, the best jump from three official
attempts was used. The outcome in the CMJ test was
vertical jump height, determined by an algorithm based
on the flight time.

Wingate test After the CMJ test, the participants were
provided another 3 minutes of passive rest before start-
ing the Wingate test. The Wingate test was performed
using a Lode Excalibur Sport Cycle Ergometer (The
Netherlands, Groningen). Individual setup of the cycle
ergometer; namely, saddle and handlebar height and
length, was determined in the first session and was
maintained throughout all subsequent trials. The Win-
gate test started with a 5-min warm-up (100W at 60–
80 rpm) [21]. After the warm-up, participants performed
a 30-s "all-out" sprint while the resistance placed on the
flywheel remained constant at 0.75 Nm/kg. The partici-
pants remained seated during the 30-s sprint. During the
test, peak power, mean power, and minimum power
were recorded using the Lode Ergometry Manager 10
software. Peak power was defined as the greatest power
value recorded during the 30-s; mean power was the
arithmetic mean of power during the test, and minimum
power was the lowest power recorded during the sprint.

Side effects
Side effects of caffeine and placebo supplementation
were evaluated at two time points: (1) immediately after
the completion of the testing sessions; and (2) in the fol-
lowing mornings, upon waking. The participants
responded to an 8-item survey regarding the incidence
of side effects (“yes/no” response scale). This survey was
also used to examine side effects in previous research
that explored effects of caffeine on exercise performance
[20, 22, 23].

Assessment of blinding
Both in the caffeine and the placebo trials, before and
after the exercise session, participants responded to the
following question: “Which supplement do you think
you have ingested?” [24]. The question had three pos-
sible responses: (a) “caffeine”, (b) “placebo” and (c) “I do
not know” [24]. In case participants respond with “a” or

“b”, they were required to state the reason for choosing
their response.

Genetic testing
The participants underwent genetic testing using a com-
mercially available testing kit from DNAfit Life Sciences
(London, UK), as in other studies [25]. Samples were
collected using buccal swab devices, with OCR-100 kits
by DNAGenotek (Ottawa, Canada). The participants
were required to avoiding eating or drinking for at least
60 min prior to the sample collection. All samples were
collected according to the manufacturer guidelines. The
samples were sent to IDna Genetics Laboratory (Nor-
wich, UK), where the analysis was performed. DNA was
extracted and purified using the Isohelix Buccalyse DNA
extraction kit BEK-50 (Cell Projects Ltd., Kent, UK), and
amplified through polymerase chain reaction (PCR) on
an ABI 7900 real-time thermocycler (Applied Biosystem,
Waltham, USA). The samples were analyzed for the
CYP1A2 rs762551 single-nucleotide polymorphism. This
analysis was performed after the exercise performance
data collection; thus, the researchers and participants
were blinded to genotype variations of the cohort until
the data collection process was finalized.

Statistical analysis
One-way ANOVA was used to test the differences be-
tween genotype groups in age, body mass, height, 1RM,
and habitual caffeine intake. We used a two-way,
repeated-measures ANOVA to test genotype (AA geno-
type vs. AC/CC genotypes) × caffeine (placebo vs. caf-
feine) interaction effect on performance data, separately
for each performance variable. In the absence of signifi-
cant genotype × caffeine interaction effects, we con-
ducted no stratified analyses of the effects of caffeine by
genotype groups. Relative effect sizes (ES) were calcu-
lated as Hedge’s g for repeated measures and presented
together with their respective 95% confidence intervals
(95% CIs). ESs of < 0.20, 0.20 to 0.49, 0.50 to 0.79, and ≥
0.80 were considered to represent trivial, small, moder-
ate, and large effects, respectively. McNemar’s test was
used in the comparison of the incidence of side effects
between the placebo and caffeine conditions. The blind-
ing data were summarized using the Bang’s Blinding
Index [26]. The values in this index range from − 1.0
(denoting opposite guessing) to 1.0 (denoting complete
unblinding) [26]. For this study, we reported the data
from this index as a percentage of individuals who iden-
tified the correct treatment condition beyond chance
[19, 26]. All analyses were performed using the Statistica
software (version 13.4.0.14; TIBCO Software Inc., Palo
Alto, CA, USA). The significance level was set at
p < 0.05.
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Results
Study participants
All participants completed all testing procedures and
were included in the final analysis. Of the whole sample,
13, 7, and 2 participants were categorized as having the
AA, AC, or CC genotype, respectively. The participants’
characteristics are presented in Table 1. There were no
significant differences between the genotype groups for
age, body mass, height, 1RM, or habitual caffeine intake.

Movement velocity and power output in the bench press
exercise
We did not find a significant main effect for genotype
(p > 0.05 for all) or a genotype × caffeine interaction ef-
fect for any of the 16 analyzed variables for movement
velocity and power output in the bench press exercise
(mean power, mean velocity, peak power, and peak vel-
ocity at 25, 50, 75, and 90% 1RM; Table 2). For all vari-
ables, except peak power output at 50% 1RM, there was
a significant main effect favoring caffeine (p < 0.05). The
ESs, favoring caffeine conditions in all outcomes, ranged
from 0.20 to 0.29 for all outcomes recorded at 25%
1RM, from 0.21 to 0.23 for all outcomes at 50% 1RM,
from 0.31 to 0.50 for all outcomes at 75% 1RM, and
from 0.57 to 0.61 for outcomes at 90% 1RM.

Muscle endurance
For the maximum number of repetitions in the bench
press exercise with 85% 1RM, we did not find a signifi-
cant main effect for genotype (p = 0.397) or a genotype ×
caffeine interaction effect (p = 0.454), while there was a
significant main effect favoring caffeine (p < 0.001; ES =
0.53). For peak velocity, mean power output, and peak
power output (matched for repetitions between placebo
and caffeine conditions), we did not find a significant
main effect for genotype (p > 0.05 for all) or a genotype
× caffeine interaction effect (p > 0.05 for all), while there
was a significant main effect favoring caffeine in all three
variables (p < 0.001 for all). The ESs ranged from 0.27
to 0.53. For mean velocity, there was a significant main
effect for genotype (p = 0.034), with the AC/CC geno-
types producing greater movement velocity than the AA
genotype, and a significant main effect favoring caffeine

(p < 0.001; ES = 0.85), while we found no significant
genotype × caffeine interaction effect (p = 0.094).

Countermovement jump
For vertical jump height in the CMJ test, we did not find
a significant main effect for genotype (p = 0.447) or a
genotype × caffeine interaction effect (p = 0.752), while
there was a significant main effect favoring caffeine (p =
0.017; ES = 0.15).

Wingate test
For peak power in the Wingate test, we did not find a
significant main effect for genotype (p = 0.998) or a
genotype × caffeine interaction effect (p = 0.542), while
there was a significant main effect favoring caffeine
(p < 0.001; ES = 0.33). For mean power in the Wingate
test, we did not find a significant main effect for geno-
type (p = 0.517) or a genotype × caffeine interaction ef-
fect (p = 0.583), while there was a significant main effect
favoring caffeine (p < 0.001; ES = 0.35). For minimum
power in the Wingate test, we did not find a significant
main effect for genotype (p = 0.505) or a genotype × caf-
feine interaction effect (p = 0.396), while there was a sig-
nificant effect favoring caffeine (p = 0.011; ES = 0.44).

Side effects
In the responses recorded immediately post-exercise, we
found a significant difference between the placebo and
caffeine conditions only in items “Increased vigor/active-
ness” and “Perception of improved performance” in the
AC/CC genotypes (Table 3). In the responses 24-h after
capsule ingestion, we did not find any significant differ-
ences in the incidence of side effects between the pla-
cebo and caffeine conditions.

Assessment of blinding – AA genotype
Before starting the exercise session, in the placebo and
caffeine conditions, respectively, 62% and 54% of the
participants with the AA genotype correctly guessed the
treatment identity beyond chance. After exercise, in the
placebo and caffeine conditions, respectively, 85% and
69% of the participants with the AA genotype correctly
guessed the treatment identity beyond chance.

Table 1 Characteristics of the participants

Variable AA group (n = 13) AC/CC group (n = 9) p-values from one-way ANOVA

Age (years) 27.0 ± 5.6 29.8 ± 3.6 0.205

Body mass (kg) 78.2 ± 6.5 80.9 ± 14.8 0.559

Height (cm) 182.2 ± 5.5 183.2 ± 5.7 0.658

1RM in the bench press (normalized per body mass) 1.1 ± 0.1 1.2 ± 0.2 0.240

Habitual caffeine intake (mg/day) 133 ± 123 117 ± 68 0.286

Data reported as mean ± standard deviation; 1RM one repetition maximum; habitual caffeine intake was estimated using a Food Frequency Questionnaire
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Table 2 Effects of caffeine on resistance exercise, jumping, and sprinting performance: results from the two-way, repeated-measures
ANOVA

Variable AA
genotype
(placebo)

AA
genotype
(caffeine)

AC/CC
genotypes
(placebo)

AC/CC
genotypes
(caffeine)

Main effect
for
genotype
p-value

Main effect
for caffeine
p-value

Genotype ×
caffeine interaction
effect
p-value

Effect size for
condition and its
95% CI

Movement velocity and power in the bench press with different loads

MP at 25% 1RM
(W)

1892 ± 299 2012 ± 325 2152 ± 501 2279 ± 517 0.139 0.001 0.918 0.29 (0.12, 0.46)

MV at 25% 1RM
(m/s)

1.41 ± 0.12 1.44 ± 0.14 1.46 ± 0.16 1.49 ± 0.15 0.411 0.035 0.566 0.20 (0.02, 0.39)

PP at 25% 1RM
(W)

3287 ± 374 3409 ± 384 3598 ± 688 3703 ± 804 0.215 0.033 0.868 0.20 (0.03, 0.37)

PV at 25% 1RM
(m/s)

2.21 ± 0.18 2.27 ± 0.18 2.31 ± 0.20 2.35 ± 0.17 0.244 0.008 0.806 0.26 (0.07, 0.46)

MP at 50% 1RM
(W)

1182 ± 145 1217 ± 154 1279 ± 214 1333 ± 249 0.196 0.008 0.545 0.22 (0.06, 0.39)

MV at 50% 1RM
(m/s)

0.94 ± 0.08 0.97 ± 0.08 0.96 ± 0.11 0.98 ± 0.10 0.711 0.019 0.955 0.21 (0.02, 0.42)

PP at 50% 1RM
(W)

1979 ± 201 2036 ± 220 2122 ± 394 2203 ± 406 0.228 0.090 0.753 0.21 (− 0.03, 0.46)

PV at 50% 1RM
(m/s)

1.41 ± 0.09 1.43 ± 0.09 1.44 ± 0.18 1.48 ± 0.16 0.468 0.031 0.489 0.23 (0.03, 0.45)

MP at 75% 1RM
(W)

789 ± 144 838 ± 151 849 ± 148 928 ± 198 0.281 < 0.001 0.229 0.36 (0.19, 0.56)

MV at 75% 1RM
(m/s)

0.56 ± 0.07 0.60 ± 0.07 0.58 ± 0.10 0.63 ± 0.10 0.618 < 0.001 0.514 0.48 (0.27, 0.72)

PP at 75% 1RM
(W)

1210 ± 238 1289 ± 233 1369 ± 207 1453 ± 293 0.128 0.007 0.940 0.31 (0.10, 0.54)

PV at 75% 1RM
(m/s)

0.80 ± 0.12 0.88 ± 0.09 0.86 ± 0.17 0.91 ± 0.17 0.433 < 0.001 0.243 0.50 (0.26, 0.77)

MP at 90% 1RM
(W)

501 ± 128 582 ± 132 588 ± 109 675 ± 143 0.103 < 0.001 0.850 0.61 (0.31, 0.93)

MV at 90% 1RM
(m/s)

0.33 ± 0.06 0.38 ± 0.07 0.38 ± 0.12 0.43 ± 0.09 0.182 < 0.001 0.909 0.57 (0.28, 0.89)

PP at 90% 1RM
(W)

821 ± 225 970 ± 231 994 ± 301 1165 ± 308 0.099 < 0.001 0.789 0.57 (0.25, 0.91)

PV at 90% 1RM
(m/s)

0.50 ± 0,09 0.59 ± 0.11 0.59 ± 0.18 0.67 ± 0.13 0.117 < 0.001 0.966 0.59 (0.27, 0.95)

Muscle endurance test

Maximum
repetitions at
85% 1RM

6.8 ± 2.3 8.2 ± 2.2 7.8 ± 2.4 8.8 ± 2.2 0.397 < 0.001 0.454 0.53 (0.27, 0.81)

MP matched for
repetitions (W)

376 ± 86 449 ± 96 476 ± 122 531 ± 159 0.074 < 0.001 0.406 0.53 (0.31, 0.79)

MV matched for
repetitions (m/
s)

0.25 ± 0.04 0.30 ± 0.04 0.30 ± 0.05 0.33 ± 0.04 0.034 < 0.001 0.094 0.85 (0.50, 1.25)

PP matched for
repetitions (W)

607 ± 178 674 ± 187 741 ± 297 808 ± 300 0.201 < 0.001 0.994 0.27 (0.14, 0.41)

PV matched for
repetitions (m/
s)

0.38 ± 0.06 0.43 ± 0.05 0.44 ± 0.09 0.48 ± 0.08 0.108 < 0.001 0.198 0.51 (0.28, 0.77)

CMJ

CMJ vertical
jump height
(cm)

34.8 ± 6.2 35.6 ± 5.9 36.6 ± 5.2 37.6 ± 5.4 0.447 0.017 0.752 0.15 (0.03, 0.28)
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Assessment of blinding – AC/CC genotypes
Before starting the exercise session, in both the placebo
and caffeine conditions, 55% of the participants with the
AC/CC genotypes correctly guessed the treatment identity
beyond chance. After exercise, in the placebo and caffeine
conditions, respectively, 44% and 78% of the participants
with the AC/CC genotypes correctly guessed the treat-
ment identity beyond chance, respectively.

Discussion
The results of the present study demonstrate that the
acute ingestion of a moderate dose of caffeine (3 mg/kg)

may produce significant improvements in: (a) movement
velocity and power output in the bench press using loads
ranging from 25 to 90% of 1RM; (b) maximum number
of repetitions performed to momentary muscle failure in
the bench press exercise, as well as the average quality
(i.e., higher movement velocity and power output) of the
performed repetitions; (c) vertical jump height; and (d)
peak, mean, and minimum power in the 30-s Wingate
test. No significant differences in the effects of caffeine
were found between the individuals with the AA geno-
type and the individuals with the AC/CC genotypes in
any of the performance tests used in the present study.

Table 2 Effects of caffeine on resistance exercise, jumping, and sprinting performance: results from the two-way, repeated-measures
ANOVA (Continued)

Variable AA
genotype
(placebo)

AA
genotype
(caffeine)

AC/CC
genotypes
(placebo)

AC/CC
genotypes
(caffeine)

Main effect
for
genotype
p-value

Main effect
for caffeine
p-value

Genotype ×
caffeine interaction
effect
p-value

Effect size for
condition and its
95% CI

Wingate

PP in the
Wingate test
(W)

874 ± 208 943 ± 197 864 ± 273 954 ± 260 0.998 < 0.001 0.542 0.33 (0.16, 0.52)

MP in the
Wingate test
(W)

583 ± 77 614 ± 67 606 ± 120 646 ± 132 0.517 < 0.001 0.583 0.35 (0.20, 0.52)

MinP in the
Wingate test
(Watts)

338 ± 108 372 ± 79 350 ± 109 414 ± 114 0.505 0.011 0.396 0.44 (0.09, 0.81)

MP mean power, MV mean velocity, PP peak power, PV peak velocity, 1RM one repetition maximum, MinP minimum power, CMJ countermovement jump, CI
confidence interval

Table 3 Perceived side effects based on questionnaires completed immediately after the testing session and the following morning

Variable AA group – placebo AA group – caffeine AC/CC group – placebo AC/CC group – caffeine

Immediately after testing session

Muscle soreness 46% 23% 0% 0%

Increased urine production 0% 23% 0% 11%

Tachycardia and heart palpitations 8% 8% 0% 0%

Increased anxiety 0% 23% 0% 0%

Headache 8% 8% 11% 11%

Abdominal/gut discomfort 0% 0% 0% 0%

Increased vigor/activeness 23% 62% 0%a 67%a

Perception of improved performance 15% 62% 11%a 100%a

The following morning

Muscle soreness 23% 8% 0% 22%

Increased urine production 8% 0% 0% 11%

Tachycardia and heart palpitations 0% 0% 0% 0%

Increased anxiety 0% 0% 0% 0%

Headache 8% 8% 22% 0%

Abdominal/gut discomfort 0% 0% 0% 0%

Insomnia 8% 0% 0% 11%

Increased vigor/activeness 0% 0% 0% 33%
aSignificant difference between the placebo and caffeine conditions within a group
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Effects of caffeine on exercise performance
In the bench press exercise, caffeine ingestion enhanced
peak and mean velocity and consequently, mean and
peak power, when exercising with low, moderate, and
high loads. These results are generally in line with previ-
ous findings [18, 20, 22]. One of the early studies [18]
conducted on this topic reported that high doses of caf-
feine (9 mg/kg) are required for acute increases in move-
ment velocity when exercising with very high loads (90%
1RM). However, our results suggest that a dose of 3 mg/
kg is effective for enhancing velocity across a wide range
of external loads, suggesting that very high doses might
not be needed. This is especially relevant to highlight as
the ESs in our study are very similar to those reported
for the bench press exercise by Pallarés et al. [18].
A recent meta-analysis found that caffeine ingestion

enhances mean and peak movement velocity in resist-
ance exercise [27]. The researchers also noted that the
effects of caffeine on mean velocity (ES = 0.80) were
higher than those for peak velocity (ES = 0.41) [27].
However, the studies included in that meta-analysis
assessed either mean or peak velocity; that is, no studies
included in the meta-analysis measured both outcomes
in the same group of participants [27]. In the present
study, we found that the ESs were very similar for both
mean and peak velocity, and this was a constant finding
across all the employed loads (i.e., 25 to 90% of 1RM).
The muscle endurance test used in this study further

confirmed that caffeine ingestion is ergogenic for this fit-
ness component in resistance-trained men. This study
adds to the body of evidence showing improvements in
muscle endurance following caffeine ingestion [28–32].
However, a more novel finding is that caffeine is ergo-
genic for power and velocity outputs when the number
of repetitions between the caffeine and placebo condi-
tions is matched. Specifically, when matching the num-
ber of repetitions between conditions, we found that the
effects of caffeine, as compared to placebo, amounted to
0.27 for peak power, 0.51 for peak velocity, 0.53 for
mean power, and 0.85 for mean velocity. Several studies
that explored the effects of caffeine on muscle endur-
ance did not find a difference in the number of per-
formed repetitions between the caffeine and placebo
conditions [13, 33, 34]. However, as we demonstrated in
the present study, even with an equal number of repeti-
tions between conditions, caffeine might have still pro-
duced considerable improvements in the quality of the
performed repetitions, that is, greater movement velocity
and consequently, greater power output (which was not
tested in the aforementioned studies). As compared to
placebo, caffeine ingestion most commonly produced
moderate improvements in the number of performed
repetitions (generally one to three additional repetitions)
[28, 31]. We propose that in some contexts,

improvements in the overall quality of the performed
repetitions may be more important for training adapta-
tions than simply performing a greater number of repeti-
tions. This hypothesis is in line with recent findings that
training at a velocity loss of 20% produced greater im-
provement in CMJ performance than training at a 40%
velocity loss [35]. Improvements in squat strength were
similar for both training conditions, even though the
group that trained with a velocity loss of 20% performed
40% fewer repetitions.
Caffeine ingestion resulted in increased vertical jump

height in the CMJ. The ES magnitude of 0.15 observed
in this study is very similar to the pooled ES of 0.17 re-
ported in a recent meta-analysis of 10 studies [36]. This
result, therefore, confirms that caffeine ingestion may
have a relatively small performance-enhancing effect on
vertical jump height [36–38]. The acute improvement in
vertical jump height following caffeine ingestion is com-
parable to the improvement in jump height found as a
result of 4 weeks of plyometric training [39, 40]. Even
though the improvement in performance was relatively
small (approximately 1 cm), it might still be practically
meaningful in sports where jump height directly impacts
athletic outcomes.
In the Wingate test, we found a significant ergogenic

effect of caffeine on peak, mean, and minimum power.
These results are in line with the findings of a recent
meta-analysis that reported ergogenic effects of caffeine
on mean and peak power in the ES magnitude of 0.18
and 0.27, respectively [41]. Of the 16 studies included in
the meta-analysis [41], 12 studies used caffeine doses of
5 or 6 mg/kg. Therefore, it could be argued that the
findings of the meta-analysis should primarily be gener-
alized to these doses of caffeine. In the present study, we
found that even a lower dose of caffeine (namely, 3 mg/
kg), increases performance in this test and that the ES is
very similar to that reported by studies using higher caf-
feine doses [41].

The influence of the CYP1A2 genotype
We did not find significant genotype × caffeine inter-
action effects in any of the analyzed performance vari-
ables. It might be that the effects of caffeine ingestion
are similar between different CYP1A2 genotypes, at least
for the performance tests used in the present study. The
results reported herein are generally in line with the
current body of evidence. Two studies [11, 12] that ex-
plored the effects of caffeine on jumping and Wingate
test performance reported similar improvements in these
outcomes following the ingestion of 3 mg/kg of caffeine
in groups of participants with the AA and AC/CC geno-
types. However, a recent study [13] that used a resist-
ance exercise protocol, found that caffeine is ergogenic
only for individuals with the AA genotype. On average,
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individuals with the AA genotype were able to complete
one more repetition with the consumption of caffeine, as
compared to placebo, whereas the number of repetitions
was the same in the placebo and caffeine conditions
among those with the AC/CC genotypes. The main
methodological difference between the current studies
exploring this topic was the dose of caffeine adminis-
tered to the participants. Specifically, we and two other
studies that reported similar results utilized 3 mg/kg of
caffeine. We opted to utilize a lower dose of caffeine as
higher doses of caffeine do not seem to produce greater
increases in performance [28]. In the study by Rahimi
[13], the dose was considerably higher (i.e., 6 mg/kg). It
might be that the differences in responses between geno-
types become apparent only at higher doses of caffeine.
Future dose-response studies might consider exploring
this hypothesis further. The effectiveness of the blinding
was not explored by Rahimi [13] thus limiting the com-
parison of the results in this aspect of the study design.
Even though Rahimi [13] reported that caffeine inges-

tion is ergogenic for AA but not AC/CC genotypes in
resistance exercise, the main outcome of that study was
the number of performed repetitions in 4 different re-
sistance exercises with 85% 1RM, which can be consid-
ered as a somewhat crude test of performance. As
mentioned previously, we demonstrated that even when
matched for the number of repetitions, caffeine, as
compared to placebo, increases the average movement
velocity and power output of the performed repetitions
(ES range = 0.27 to 0.85). Therefore, even though Rahimi
[13] reported that in the AC/CC genotypes the total
number of repetitions was the same following the inges-
tion of caffeine and placebo, caffeine might have still
enhanced the average velocity and power of these repeti-
tions. We would suggest that future research in this area
explores both the quality and quantity of the performed
repetitions, to provide a more comprehensive assessment
of possible effects of caffeine.

Strengths and limitations
Some of the key strengths of this study are: (a) the
standardization of testing conditions, including nutri-
tional intake, physical activity, and the time of day at
which the testing is conducted; (b) the inclusion of
trained individuals as study participants; (c) a broad
range of exercise performance variables that were
assessed as outcomes; (d) assessment of performance
across a wide-range of loads in the bench press exercise
and both quantity and quality of repetitions, when exam-
ining muscle endurance as the outcome variable.
There are several potential limitations of this study

that need to be acknowledged. First, due to the low
number of individuals with the CC genotype, we com-
bined the AC and CC genotypes into one group. This is

fairly common in this line of research, as the number of
individuals with the CC genotype in the population is
suggested to be ~ 10% [9]. To get around 10 to 12 par-
ticipants with the CC genotype a study would need to
screen from 100 to 120 potential study participants.
However, despite the fact this is a common practice, it
could have confounded findings, as the effects of caffeine
might not be uniform between individuals with the AC
vs. CC genotype [10, 42]. In the current study, we could
not test this further, because the number of individuals
with the CC genotype was n = 2. Of note, the exclusion
of these two participants from the analysis did not alter
the study results.
The second limitation is related to the efficacy of

blinding [24]. Previous research has established that cor-
rect supplement identification may impact the outcomes
of a given exercise test and, therefore, bias the results. In
the present study, around 50–60% of the participants
were able to correctly identify the placebo and caffeine
condition beyond random chance in the pre-exercise as-
sessment. In the post-exercise assessment, this percent-
age generally stayed the same or slightly increased. We
believe that the pre-exercise responses are of greater im-
portance, given that the improvements during the test-
ing session (or lack thereof) may influence the post-
exercise responses. Tallis and colleagues [43] tested their
participants in four conditions: (1) “told caffeine, given
caffeine”; (2) “told caffeine, given placebo”; (3) “told pla-
cebo, given placebo”; and (4) “told placebo, given caf-
feine”. Equal improvements were found on both
occasions when the participants indeed ingested caffeine
(i.e., “told caffeine, given caffeine” and “told placebo,
given caffeine” conditions), thus suggesting that this
limitation of our study might not have greatly affected
our findings.

Conclusions
This study found that caffeine is acutely ergogenic for
movement velocity, power output, and muscle endur-
ance in resistance exercise, vertical jump height, and
peak, mean, and minimum power in a Wingate test.
These performance-enhancing effects were observed fol-
lowing the ingestion of using a moderate dose of caffeine
(3 mg/kg), which resulted in minimal side effects. The
comparisons of the effects of caffeine on exercise per-
formance between individuals with the AA genotype and
AC/CC genotypes found no significant differences.
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