CORRECTION

Open Access

Correction to: The effect of low dose marine protein hydrolysates on short-term recovery after high intensity performance cycling: a double-blinded crossover study

Ingunn Mjøs^{1,2}, Einar Thorsen^{3,4}, Trygve Hausken^{5,6}, Einar Lied⁷, Roy M. Nilsen¹, Ingeborg Brønstad^{5,6}, Elisabeth Edvardsen^{8,9} and Bente Frisk^{1,2*}

Correction to: J Int Soc Sports Nutr (2019) 16:48 https://doi.org/10.1186/s12970-019-0318-3

The original article [1] contains errors in Tables 1 and 3: Table 1 erroneously mentions use of a treadmill which should instead state 'bicycle', and Table 3 has a minor typesetting mistake.

The correct versions of both Tables can be viewed ahead in this Correction article.

Author details

¹Department of Health and Functioning, Western Norway University of Applied Sciences, Pb. 7030, 5020 Bergen, Norway. ²Department of Physiotherapy, Haukeland University Hospital, Bergen, Norway. ³Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway. ⁵Department of Clinical Medicine, University of Bergen, Bergen, Norway. ⁶National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway. ⁷Eirmenich Bjørge Biomarin A/S, Aalesund, Norway. ⁸Department of Pulmonary Medicine, Oslo University Hospital, Ullevål, Oslo, Norway. ⁹Norwegian School of Sport Sciences, Oslo, Norway.

Published online: 03 January 2020

Reference

 Mjøs I, Thorsen E, Hausken T, Lied E, Nilsen RM, Brønstad I, et al. The effect of low dose marine protein hydrolysates on short-term recovery after high intensity performance cycling: a double-blinded crossover study. J Int Soc Sports Nutr. 2019;16:48. https://doi.org/10.1186/s12970-019-0318-3.

The original article can be found online at https://doi.org/10.1186/s12970-019-0318-3

* Correspondence: bente.frisk@hvl.no

¹Department of Health and Functioning, Western Norway University of Applied Sciences, Pb. 7030, 5020 Bergen, Norway

²Department of Physiotherapy, Haukeland University Hospital, Bergen, Norway

Full list of author information is available at the end of the article

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Table 1 Baseline characteristics of the participants and
physiological responses to the incremental exercise test on
bicycle

lone) ene	
Characteristics ($N = 14$)	Mean
Age (years)	45.6 ± 5.3
Height (cm)	181±4
Weight (kg)	80.1 ± 6.4
BMI (kg/m ²)	24.5 ± 2.2
Muscle mass (kg)	37.7 ± 2.3
Fat mass (%)	16.6 ± 4.4
\dot{VO}_{2max} (ml min ⁻¹ kg ⁻¹)	54.7 ± 4.1
Workload _{max} (Watt)	422 ± 32
RER _{max}	1.20 ± 0.10
V _{Emax} (L/min)	167 ± 16
Lactate _{max} (mmol/L)	11.2 ± 1.4
HR _{max} (bpm)	185 ± 8
Glucose _{max} (mmol/L)	4.8 ± 1.1
Borg RPE _{max} (median)	19

Data are presented as mean \pm standard deviation (SD) unless otherwise stated. BMI: body mass index; \dot{VO}_{2max} : maximal oxygen uptake; RER: respiratory exchange ratio; \dot{V}_E : ventilation; HR: heart rate; RPE: rating of perceived exertion

Table 3 Differences	between morning	minus afternoon	cycling sessions for	CHO-WP-MPH	and CHO-WP and	comparison of the
diets						

^a CHO-WP-MPH	^a CHO-WP	Diff. CHO-WP-MPH versus CHO-WP		
N = 14	N = 14			
$\text{Mean }_{\text{diff}} \pm \text{SD}$	Mean $_{\rm diff}\pm$ SD	Mean _{diff}	95% CI	<i>p</i> -value
1.37 ± 2.03	0.52 ± 1.17	0.85	-0.37, 2.06	0.156
-0.9 ± 2.4	-1.7 ± 3.0	0.8	-0.9, 2.5	0.331
-0.01 ± 0.03	-0.06 ± 0.21	- 0.05	- 0.07, 0.17	0.361
1.88 ± 0.83	2.12 ± 1.02	-0.24	-1.00, 0.53	0.511
0.78 ± 0.65	0.55 ± 0.73	0.23	-0.05, 0.51	0.094
	^a CHO-WP-MPH N = 14 Mean diff \pm SD 1.37 \pm 2.03 -0.9 ± 2.4 -0.01 ± 0.03 1.88 \pm 0.83 0.78 \pm 0.65	^a CHO-WP-MPH ^a CHO-WP N = 14 N = 14 Mean _{diff} ± SD Mean _{diff} ± SD 1.37 ± 2.03 0.52 ± 1.17 -0.9 ± 2.4 -1.7 ± 3.0 -0.01 ± 0.03 -0.06 ± 0.21 1.88 ± 0.83 2.12 ± 1.02 0.78 ± 0.65 0.55 ± 0.73	a CHO-WP-MPH a CHO-WP Diff. CHO-WP-MPH v $N = 14$ $N = 14$ Mean _{diff} ± SD Mean _{diff} ± SD Mean _{diff} 1.37 ± 2.03 0.52 ± 1.17 0.85 -0.9 ± 2.4 -1.7 ± 3.0 0.8 -0.01 ± 0.03 -0.06 ± 0.21 -0.05 1.88 ± 0.83 2.12 ± 1.02 -0.24 0.78 ± 0.65 0.55 ± 0.73 0.23	aCHO-WP-MPH aCHO-WP Diff. CHO-WP-MPH versus CHO-WP N=14 N=14 N=14 Mean _{diff} ± SD Mean _{diff} description 95% Cl 1.37 ± 2.03 0.52 ± 1.17 0.85 -0.37, 2.06 -0.9 ± 2.4 -1.7 ± 3.0 0.8 -0.9, 2.5 -0.01 ± 0.03 -0.06 ± 0.21 -0.05 -0.07, 0.17 1.88 ± 0.83 2.12 ± 1.02 -0.24 -1.00, 0.53 0.78 ± 0.65 0.55 ± 0.73 0.23 -0.05, 0.51

Data are presented as mean values, standard deviations (SD), 95% confidence interval (CI), and *P*-value. Diff. CHO-WP-MPH versus CHO-WP: differences between morning and afternoon cycling sessions with ingestion of CHO-WP-MPH versus CHO-WP.^a Five participants ingested CHO-WP-MPH and nine CHO-WP in the first intervention (phase II) and in the second intervention (phase III) nine participants ingested CHO-WP-MPH and five CHO-WP.^b Time_{diff} at 95% of VO_{2max}: differences between cycling time in the morning and in the afternoon at 95% of VO_{2max}. CHO, carbohydrate; WP, whey protein; MPH, marine protein hydrolysate; difference; HR, Heart rate; bpm, beats pr. min; RER, respiratory exchange ratio